Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2015

Extreme geomagnetic disturbances due to shocks within CMEs

We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth\textquoterights magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large geomagnetic effects at Earth, including magnetopause shadowing.

Lugaz, N.; Farrugia, C.; Huang, C.-L.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015GL064530

coronal mass ejections; Geomagnetic storm; magnetopause; magnetosheath; shocks

Unraveling the drivers of the storm time radiation belt response

We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined effect of the structured solar wind driver and prestorm electron flux levels. In particular, we find that loss mechanisms dominate during stream interface regions, coronal mass ejection (CME) ejecta, and sheaths while enhancements occur during fast streams trailing the stream interface or the CME.

Kilpua, E.; Hietala, H.; Turner, D.; Koskinen, H.; Pulkkinen, T.; Rodriguez, J.; Reeves, G.; Claudepierre, S.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2015GL063542

coronal mass ejections; Magnetic Storms; Radiation belts; solar wind storm drivers; stream interaction regions; Van Allen Probes



  1